Battery emulator for traction drive hybrid energy system
Dimitar Boychev, Blagoy Burdin, Daria Vladikova
Journal
NANOSCIENCE & NANOTECHNOLOGY: Nanostructured Materials Application and Innovation Transfers, Volume 20, Number 2, 2022
Article ID
13
Pages
37-45
Title
Battery emulator for traction drive hybrid energy system
Author(s), Affiliation(s)
Dimitar Boychev, Institute of Electrochemistry and Energy Systems - Bulgarian Academy of Sciences
Blagoy Burdin, Institute of Electrochemistry and Energy Systems - Bulgarian Academy of Sciences
Daria Vladikova, Institute of Electrochemistry and Energy Systems - Bulgarian Academy of Sciences & Institute for Sustainable Transition and Development – Trakia University
Keywords
battery emulator, traction drive energy system, fuel cell/battery hybrid system
Abstract
When building inverters for traction drive motors, a test bench for optimization in conditions close to those for real operation can accelerate the procedure and its quality and efficiency. This is of prime importance for fuel cell based electric vehicles which are under intensive development, since they are expected to fill the gap for zero emission heavy duty vehicles where batteries cannot provide the necessary range and charging time. There is a special interest in traction drive systems powered by combined fuel cell/ battery energy source, where an optimization in respect of efficiency and price can be achieved. In the classical approach the two energy sources are connected to a DC bus witch powers the traction inverter. In this work a battery emulator concept, design and realization as part of a 10kW test bench for optimization of the hybrid system fuel cell/battery is presented. Its advantage is that the tests are not limited by the battery capacitance. Moreover, the battery emulator has unlimited charge-discharge cycles and can be charged instantly in comparison to the real battery conditions. The battery performance is emulated based on the i-V curves which reflect the ability of the system to produce energy. The block diagrams of the charge and discharge capacitance calculators as well as of the whole emulator are presented. On this stage the emulator is built and the first experiments for validation of its are under preparation.
Acknowledge/Funder
This work is supported by the Bulgarian Ministry of Education and Science under the National Research Programme E+: Low Carbon Energy for the Transport and Households, grant agreement D01-214/2018 and by the National Roadmap for Research Infrastructure 2017–2023 “Energy storage and hydrogen energetics (ESHER)”, approved by DCM № 354/29.08.2017
References
1. Dung. L.-R., Yuan H.-F., Yen J.-H., She C.-H., Energies, 9 (2016) 51, https://doi.org/10.3390/en9010051
2. Uddin K., Picarelli A., Lyness C., Taylor N., Marco J., Energies, 7 (2014) 5675–5700, https://doi.org/10.3390/en7095675
3. Dees D.W., Battaglia V.S., Bélanger A., J. Power Sources, 110 (2002) 310–320, https://doi.org/10.1016/S0378-7753(02)00193-3
4. Newman J., Thomas K.E., Hafezi H., Wheeler D.R., J. Power Sources, 119–121 (2003) 838–843, https://doi.org/10.1016/S0378-7753(03)00282-9
5. Gomadam P.M., Weidner J.W., Dougal R.A., White R.E., J. Power Sources, 110 (2002) 267–284, https://doi.org/10.1016/S0378-7753(02)00190-8
6. Klein R., Chaturvedi N., Christensen J., Ahmed J., Findeisen R., Kojic A., IEEE Trans. Control Syst. Technol., 21 (2012) 289–301, https://doi.org/10.1109/TCST.2011.2178604
7. Ahmed R., El Sayed M., Arasaratnam I., Tjong J., Habibi S, IEEE J. Emerg. Sel. Top. Power Electron., 2 (2014) 659–677, https://doi.org/10.1109/JESTPE.2014.2331059
8. Ahmed R., El Sayed M., Arasaratnam I., Tjong J., Habibi S., IEEE J. Emerg. Sel. Top. Power Electron., 2 (2014) 678–690, https://doi.org/10.1109/JESTPE.2014.2331062
9. Pedram M., Wu Q., Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, New Orleans, LA, USA, 21–25 June 1999, pp. 861–866, https://dl.acm.org/doi/proceedings/10.1145/309847
10. Chiasserini C., Rao R., IEEE J. Sel. Areas Commun., 19 (2001) 1235–1245, https://doi.org/10.1109/49.932692
11. Linden D., Reddy T.B. “Handbook of Batteries”, 3rd ed., McGraw-Hill, New York, NY, USA, 2002, pp. 1108-1146, ISBN 0-07-135978-8
12. Manwell J.F., McGowan J.G., Solar Energy, 50 (1993) 399–405, https://doi.org/10.1016/0038-092X(93)90060-2
13. Rakhmatov D., Vrudhula S., Wallach D., IEEE Trans. VLSI Syst., 11 (2003) 1019–1030, https://doi.org/10.1109/TVLSI.2003.819320
14. Rong P., Pedram M., IEEE Trans. VLSI Syst., 14 (2006) 441–451, https://doi.org/10.1109/TVLSI.2006.876094
15. Agarwal V., Uthaichana K., DeCarlo R., Tsoukalas L., IEEE Trans. Energy Convers., 25 (2010) 821–835, https://doi.org/10.1109/TEC.2010.2043106
16. Schweighofer B., Raab K., Brasseur G., IEEE Trans. Instrum. Meas., 52 (2003) 1087–1091, https://doi.org/10.1109/TIM.2003.814827
17. Chen M., Rincon-Mora G., IEEE Trans. Energy Convers., 21 (2006) 504–511, https://doi.org/10.1109/TEC.2006.874229
18. Szumanowski A., Chang Y, IEEE Trans. Veh. Technol., 57 (2008) 1425–1432, https://doi.org/10.1109/TVT.2007.912176
19. Hu X., Li S., Peng H., J. Power Sources, 198 (2012) 359–367, https://doi.org/10.1016/j.jpowsour.2011.10.013
20. Thirugnanam K., Ezhil Reena J., Singh M., Kumar P., IEEE Trans. Energy Convers., 29 (2014) 332–343, https://doi.org/ 10.1109/TEC.2014.2298460
21. Sánchez L., Blanco C., Antón J., García V., González M., Viera J., IEEE Trans. Ind. Electron., 62 (2015) 555–563, https://doi.org/10.1109/TIE.2014.2327552
22. Yang H.C., Dung L.R., Proceedings of the IEEE 16th International Symposium on Industrial Electronics (ISIE), Vigo, Spain, 4–7 June 2007, pp. 866–871, https://doi.org/10.1109/ISIE.2007.4374711
23. Kim T., Qiao,W., IEEE Trans. Energy Convers., 26 (2011) 1172–1180, https://doi.org/10.1109/TEC.2011.2167014
24. Zhang J., Ci S., Sharif H., Alahmad M., Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010, pp. 672–675, https://doi.org/10.1109/APEC.2010.5433597
25. Zhang J., Ci S., Sharif H., Alahmad M., IEEE Trans. Energy Convers., 25 (2010) 1133–1141, https://doi.org/10.1109/TEC.2010.2048904
26. Widanage W., Barai A., Chouchelamane G.H., Uddin K., McGordon A., Marco J., Jennings P., J. Power Sources, 324 (2016) 70-78, https://doi.org/10.1016/j.jpowsour.2016.05.015
27. Widanage W.D., Barai A., Chouchelamane G.H., Uddin K., McGordon A., Marco J., Jennings P., J. Power Sources, 324 (2016) 61-69, https://doi.org/10.1016/j.jpowsour.2016.05.014
28. Zhang C., Li K., Deng J., Song S., IEEE Trans. Industrial Electron., 64 (2017) 654-663, https://doi.org/10.1109/TIE.2016.2610398
29. Xia B., Zhao X., De Callafon R., Garnier H., Nguyen T., Mi C., Appl. Energy, 179 (2016) 426 – 436, https://doi.org/10.1016/j.apenergy.2016.07.005
30. Hu Y., Wang Y.Y., IEEE Trans. Control Syst. Technol., 23 (2015) 1180-1188, https://doi.org/10.1109/TCST.2014.2358846
31. Li Z., Shi X., Shi M., Wang Y., Sun H. , 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 13-15 July 2020, Weihai, China, pp. 1357-1362, https://doi.org/10.1109/ICPSAsia48933.2020.9208436
32. Zhang C., Li K., Pei L., Zhu C., J. Power Sources, 283 (2015) 24-36, https://doi.org/10.1016/j.jpowsour.2015.02.099
How to be cited
Boychev D., Burdin B., Vladikova D., Battery emulator for traction drive hybrid energy system, Nanoscience & Nanotechnology, 20, N 1-2 (2022), pp. хх-хх, https://doi.org/10.xxxx/nsnt.2022.xxxx
Date ASAP
28 December 2022
Date Published
14 March 2023
Article's URL
https://nsnt.iees.bas.bg/en/articles-123/show-162(13)
Corresponding author
Dimitar Todorov Boychev, d.boychev@iees.bas.bg
Journal Metrics
- ISSN 1313-8995 (print)
- ISSN 2738-8743 (online)
The Journal is indexed in:
- World Catalog
- CAS – А division of the American Chemical Society;
- Google Scholar;